142 research outputs found

    THE ROLE OF IMAGING IN SCREENING SPECIAL FEATURE: COMMENTARY EUPS-argues that lung cancer screening should be implemented in 18 months

    Get PDF
    The European Position Statement (EUPS) expert group comprised of individuals who have been actively involved in the planning and execution of all the low dose CT (LDCT) randomised controlled European screening trials. They have argued that as lung cancer screening with LDCT saves lives, planning for implementation needs to be started by the national health organisations throughout Europe. The EUPS examined the current evidence which supports the planning for the implementation of lung cancer screening, as well as areas which require further work. One of the major areas the EUPS focused on was the management of prevalent lung nodules in CT-screening programmes, lung nodules at incident screening (newly detected) and CT-detected lung nodules in clinical practice should be managed with different protocols, due to different pre-test lung cancer probability. The EUPS provides nine recommendations and a "Call to Action" for implementation, which is naturally dependent on the outcome of the NELSON trial. Clearly, the issue is how Europe can take this forward as part of the political agenda of individual countries, as well as that of the EU Commission. An EU policy document has been developed, which focuses on the key steps in the implementation of cost effective lung cancer screening in Europe

    Role of imaging in progressive-fibrosing interstitial lung diseases

    Get PDF
    Imaging techniques are an essential component of the diagnostic process for interstitial lung diseases (ILDs). Chest radiography is frequently the initial indicator of an ILD, and comparison of radiographs taken at different time points can show the rate of disease progression. However, radiography provides only limited specificity and sensitivity and is primarily used to rule out other diseases, such as left heart failure. High-resolution computed tomography (HRCT) is a more sensitive method and is considered central in the diagnosis of ILDs. Abnormalities observed on HRCT can help identify specific ILDs. HRCT also can be used to evaluate the patient's prognosis, while disease progression can be assessed through serial imaging. Other imaging techniques such as positron emission tomography-computed tomography and magnetic resonance imaging have been investigated, but they are not commonly used to assess patients with ILDs. Disease severity may potentially be estimated using quantitative methods, as well as visual analysis of images. For example, comprehensive assessment of disease staging and progression in patients with ILDs requires visual analysis of pulmonary features that can be performed in parallel with quantitative analysis of the extent of fibrosis. New approaches to image analysis, including the application of machine learning, are being developed

    Prevalence and clinical characteristics of non-malignant CT detected incidental findings in the SUMMIT lung cancer screening cohort

    Get PDF
    BACKGROUND: Pulmonary and extrapulmonary incidental findings are frequently identified on CT scans performed for lung cancer screening. Uncertainty regarding their clinical significance and how and when such findings should be reported back to clinicians and participants persists. We examined the prevalence of non-malignant incidental findings within a lung cancer screening cohort and investigated the morbidity and relevant risk factors associated with incidental findings. We quantified the primary and secondary care referrals generated by our protocol. METHODS: The SUMMIT study (NCT03934866) is a prospective observational cohort study to examine the performance of delivering a low-dose CT (LDCT) screening service to a high-risk population. Spirometry, blood pressure, height/weight and respiratory history were assessed as part of a Lung Health Check. Individuals at high risk of lung cancer were offered an LDCT and returned for two further annual visits. This analysis is a prospective evaluation of the standardised reporting and management protocol for incidental findings developed for the study on the baseline LDCT. RESULTS: In 11 115 participants included in this analysis, the most common incidental findings were coronary artery calcification (64.2%) and emphysema (33.4%). From our protocolised management approach, the number of participants requiring review for clinically relevant findings in primary care was 1 in 20, and the number potentially requiring review in secondary care was 1 in 25. CONCLUSIONS: Incidental findings are common in lung cancer screening and can be associated with reported symptoms and comorbidities. A standardised reporting protocol allows systematic assessment and standardises onward management

    Growing small solid nodules in lung cancer screening: safety and efficacy of a 200 mm3 minimum size threshold for multidisciplinary team referral

    Get PDF
    The optimal management of small but growing nodules remains unclear. The SUMMIT study nodule management algorithm uses a specific threshold volume of 200 mm3 before referral of growing solid nodules to the multidisciplinary team for further investigation is advised, with growing nodules below this threshold kept under observation within the screening programme. Malignancy risk of growing solid nodules of size >200 mm3 at initial 3-month interval scan was 58.3% at a per-nodule level, compared with 13.3% in growing nodules of size ≤200 mm3 (relative risk 4.4, 95% CI 2.17 to 8.83). The positive predictive value of a combination of nodule growth (defined as percentage volume change of ≥25%), and size >200 mm3 was 65.9% (29/44) at a cancer-per-nodule basis, or 60.5% (23/38) on a cancer-per-participant basis. False negative rate of the protocol was 1.9% (95% CI 0.33% to 9.94%). These findings support the use of a 200 mm3 minimum volume threshold for referral as effective at reducing unnecessary multidisciplinary team referrals for small growing nodules, while maintaining early-stage lung cancer diagnosis

    Impact of radiographer immediate reporting of X-rays of the chest from general practice on the lung cancer pathway (radioX): a randomised controlled trial

    Get PDF
    The National Optimal Lung Cancer Pathway recommends rapid progression from abnormal chest X-rays (CXRs) to CT. The impact of the more rapid reporting on the whole pathway is unknown. The aim of this study was to determine the impact of immediate reporting of CXRs requested by primary care by radiographers on the time to diagnosis of lung cancer. METHOD: People referred for CXR from primary care to a single acute district general hospital in London attended sessions that were prerandomised to either immediate radiographer (IR) reporting or standard radiographer (SR) reporting within 24 hours. CXRs were subsequently reported by radiologists blind to the radiographer reports to test the reliability of the radiographer report. Radiographer and local radiologist discordant cases were reviewed by thoracic radiologists, blinded to reporter. RESULTS: 8682 CXRs were performed between 21 June 2017 and 4 August 2018, 4096 (47.2%) for IR and 4586 (52.8%) for SR. Lung cancer was diagnosed in 49, with 27 (55.1%) for IR. The median time from CXR to diagnosis of lung cancer for IR was 32 days (IQR 19, 70) compared with 63 days (IQR 29, 78) for SR (p=0.03).8258 CXRs (95.1%) were reported by both radiographers and local radiologists. In the 1361 (16.5%) with discordance, the reviewing thoracic radiologists were equally likely to agree with local radiologist and radiographer reports. CONCLUSIONS: Immediate reporting of CXRs from primary care reduces time to diagnosis of lung cancer by half, likely due to rapid progress to CT. Radiographer reports are comparable to local radiologist reports for accuracy. TRIAL REGISTRATION: International Standard Randomised Controlled Trial Number ISRCTN21818068. Registered on 20 June 2017

    Uptake of invitations to a lung health check offering low-dose CT lung cancer screening among an ethnically and socioeconomically diverse population at risk of lung cancer in the UK (SUMMIT): a prospective, longitudinal cohort study

    Get PDF
    BACKGROUND: Lung cancer screening with low-dose CT reduces lung cancer mortality, but screening requires equitable uptake from candidates at high risk of lung cancer across ethnic and socioeconomic groups that are under-represented in clinical studies. We aimed to assess the uptake of invitations to a lung health check offering low-dose CT lung cancer screening in an ethnically and socioeconomically diverse cohort at high risk of lung cancer. METHODS: In this multicentre, prospective, longitudinal cohort study (SUMMIT), individuals aged 55-77 years with a history of smoking in the past 20 years were identified via National Health Service England primary care records at practices in northeast and north-central London, UK, using electronic searches. Eligible individuals were invited by letter to a lung health check offering lung cancer screening at one of four hospital sites, with non-responders re-invited after 4 months. Individuals were excluded if they had dementia or metastatic cancer, were receiving palliative care or were housebound, or declined research participation. The proportion of individuals invited who responded to the lung health check invitation by telephone was used to measure uptake. We used univariable and multivariable logistic regression analyses to estimate associations between uptake of a lung health check invitation and re-invitation of non-responders, adjusted for sex, age, ethnicity, smoking, and deprivation score. This study was registered prospectively with ClinicalTrials.gov, NCT03934866. FINDINGS: Between March 20 and Dec 12, 2019, the records of 2 333 488 individuals from 251 primary care practices across northeast and north-central London were screened for eligibility; 1 974 919 (84·6%) individuals were outside the eligible age range, 7578 (2·1%) had pre-existing medical conditions, and 11 962 (3·3%) had opted out of particpation in research and thus were not invited. 95 297 individuals were eligible for invitation, of whom 29 545 (31·0%) responded. Due to the COVID-19 pandemic, re-invitation letters were sent to only a subsample of 4594 non-responders, of whom 642 (14·0%) responded. Overall, uptake was lower among men than among women (odds ratio [OR] 0·91 [95% CI 0·88-0·94]; p<0·0001), and higher among older age groups (1·48 [1·42-1·54] among those aged 65-69 years vs those aged 55-59 years; p<0·0001), groups with less deprivation (1·89 [1·76-2·04] for the most vs the least deprived areas; p<0·0001), individuals of Asian ethnicity (1·14 [1·09-1·20] vs White ethnicity; p<0·0001), and individuals who were former smokers (1·89 [1·83-1·95] vs current smokers; p<0·0001). When ethnicity was subdivided into 16 groups, uptake was lower among individuals of other White ethnicity than among those with White British ethnicity (0·86 [0·83-0·90]), whereas uptake was higher among Chinese, Indian, and other Asian ethnicities than among those with White British ethnicity (1·33 [1·13-1·56] for Chinese ethnicity; 1·29 [1·19-1·40] for Indian ethnicity; and 1·19 [1·08-1·31] for other Asian ethnicity). INTERPRETATION: Inviting eligible adults for lung health checks in areas of socioeconomic and ethnic diversity should achieve favourable participation in lung cancer screening overall, but inequalities by smoking, deprivation, and ethnicity persist. Reminder and re-invitation strategies should be used to increase uptake and the equity of response. FUNDING: GRAIL

    The role of computer-assisted radiographer reporting in lung cancer screening programmes

    Get PDF
    OBJECTIVES: Successful lung cancer screening delivery requires sensitive, timely reporting of low-dose computed tomography (LDCT) scans, placing a demand on radiology resources. Trained non-radiologist readers and computer-assisted detection (CADe) software may offer strategies to optimise the use of radiology resources without loss of sensitivity. This report examines the accuracy of trained reporting radiographers using CADe support to report LDCT scans performed as part of the Lung Screen Uptake Trial (LSUT). METHODS: In this observational cohort study, two radiographers independently read all LDCT performed within LSUT and reported on the presence of clinically significant nodules and common incidental findings (IFs), including recommendations for management. Reports were compared against a 'reference standard' (RS) derived from nodules identified by study radiologists without CADe, plus consensus radiologist review of any additional nodules identified by the radiographers. RESULTS: A total of 716 scans were included, 158 of which had one or more clinically significant pulmonary nodules as per our RS. Radiographer sensitivity against the RS was 68-73.7%, with specificity of 92.1-92.7%. Sensitivity for detection of proven cancers diagnosed from the baseline scan was 83.3-100%. The spectrum of IFs exceeded what could reasonably be covered in radiographer training. CONCLUSION: Our findings highlight the complexity of LDCT reporting requirements, including the limitations of CADe and the breadth of IFs. We are unable to recommend CADe-supported radiographers as a sole reader of LDCT scans, but propose potential avenues for further research including initial triage of abnormal LDCT or reporting of follow-up surveillance scans. KEY POINTS: • Successful roll-out of mass screening programmes for lung cancer depends on timely, accurate CT scan reporting, placing a demand on existing radiology resources. • This observational cohort study examines the accuracy of trained radiographers using computer-assisted detection (CADe) software to report lung cancer screening CT scans, as a potential means of supporting reporting workflows in LCS programmes. • CADe-supported radiographers were less sensitive than radiologists at identifying clinically significant pulmonary nodules, but had a low false-positive rate and good sensitivity for detection of confirmed cancers

    Predicting outcomes in rheumatoid arthritis related interstitial lung disease

    Get PDF
    Aims: To compare radiology-based prediction models in rheumatoid arthritis-related interstitial lung disease (RA-ILD) to identify patients with a progressive fibrosis phenotype.Methods: RAILD patients had CTs scored visually and by CALIPER and forced vital capacity (FVC) measurements. Outcomes were evaluated using three techniques: 1.Scleroderma system evaluating visual ILD extent and FVC values; 2.Fleischer Society IPF diagnostic guidelines applied to RAILD; 3.CALIPER scores of vessel-related structures (VRS). Outcomes were compared to IPF patients.Results: On univariable Cox analysis, all three staging systems strongly predicted outcome: Scleroderma System:HR=3.78, p=9×10-5; Fleischner System:HR=1.98, p=2×10-3; 4.4% VRS threshold:HR=3.10, p=4×10-4 When the Scleroderma and Fleischner Systems were combined, termed the Progressive Fibrotic System (C-statistic=0.71), they identified a patient subset (n=36) with a progressive fibrotic phenotype and similar 4-year survival to IPF.On multivariable analysis, with adjustment for patient age, gender and smoking status, when analysed alongside the Progressive Fibrotic System, the VRS threshold of 4.4% independently predicted outcome (Model C-statistic=0.77).Conclusions: The combination of two visual CT-based staging systems identified 23% of an RAILD cohort with an IPF-like progressive fibrotic phenotype. The addition of a computer-derived VRS threshold further improved outcome prediction and model fit, beyond that encompassed by RAILD measures of disease severity and extent
    • …
    corecore